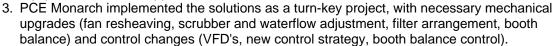
Case Study #2: Paint Spray Booth Upgrades/Airflow Optimization


Problem:

In a US automotive plant:

- New application equipment requires lower downdraft velocities.
- Operation of both paint spraybooth needs to be optimized, as it pertains to the downdraft air velocities and other parameters.

Solution:

- PCE Monarch performed a baseline evaluation of the existing operating conditions of both paint spray booths and the associated air handling equipment.
- 2. PCE Monarch engineers identified opportunities for air volume reductions and equipment shutdown opportunities.

Table 1: Summary of resulting Annual Energy Savings

Booth	(SCFM) Reduction	Heating Cost Reductions	Cooling Cost Reductions	Electrical Cost Reductions	Total Savings
Booth #1	34,389	\$58,067	\$8,362	\$14,695	\$81,124
Booth #2	48,254	\$117,863	\$12,090	\$20,621	\$150,574
Total Reductions	82,643	\$175,930	\$20,452	\$35,316	\$231,698*

^{*}Estimate is based on natural gas price of \$7 per MCF and electrical cost of 0.045 per kWh.

Resulting annual energy savings = \$231,698.00 The cost for implementation of the required changes = \$205,194.00

ROI = 10 months!

Additional savings not included in these were: improved product quality, reduced downtime, reduction in bulk material usage, reduced complaints from manual operators.